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Abstract

Sharpness-Aware Minimization (SAM) has emerged as a promising training scheme that leads to good
generalization through finding flat minima. Despite its accomplishments in various fields, the existing
theoretical understanding of SAM is far behind its successes. To extend the understanding of SAM, we
theoretically analyze the SAM from two novel perspectives: escape efficiency and asymmetric valleys.
First, we prove that SAM can escape a minimum faster than SGD. Hence the SAM can explore more
minima than SGD and can converge to flatter minima by escaping minima where SGD would be stranded.
Second, we show that SAM converges to a flatter region on asymmetric valleys than SGD and it leads
to better generalization. Moreover, we prove that these effects are amplified by increasing the radius p
of inner maximization. Based on the proposed theory, we further study an efficient way to utilize SAM,
Parsimonious SAM (PSAM), which uses SAM periodically in the early phase of training. Finally, on
various architectures and datasets, we empirically verify that the proposed theory holds well in practice,
and PSAM presents comparable performance to SAM while it requires only 65% of the computational
cost of SAM.

Keywords Deep Learning, Generalization, Sharpness-Aware Minimization, Escape Efficiency, Asym-

metric Valleys
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Chapter 1. Introduction

Recently, neural networks have achieved remarkable successes in various application areas including
computer vision, natural language processing, and graph neural networks. While neural networks have
evolved, their architecture became much more complicated and the number of parameters far exceeded
the number of data points. Despite its overparameterized nature, it has been verified to have good
generalization performance contrary to the conventional learning theory regarding the model complexity
and overfitting. Such phenomenon is often referred to as the double-descent phenomenon [1]. Numerous
efforts have attempted to explain this enigma of the generalizability of neural networks, as a consequence,
there is a widely acknowledged theory known as Flat Minima hypothesis.

The flat minima hypothesis was first introduced in [2] and recently revisited by [3]. The hypothesis
says that a neural network with a flatter minimum on its loss function tends to have better generalization
than one with a sharper minimum. It stems from the fact that flat minima are robust to the distributional
shift and thus tend to have a better fit on population loss. However, [4, 5] pointed out that the sharpness
can be arbitrarily amplified by the network’s parameter scale and a number of works [6, 7, 8, 9] studied
to resolve this issue. With these progressive refinements and extensive empirical validation [10], the flat
minima hypothesis became a promising narrative for explaining the neural network’s generalizability.

Based on the hypothesis, several researchers studied optimization algorithms to find the flat min-
ima [11, 12, 13] and among them, the Sharpness-Aware Minimization (SAM) [13] bas emerged as a
propitious training scheme. SAM finds a minimum where the entire neighborhood of minimum has uni-
formly low loss value and thus can find flat minima. However, some works [8, 14, 15, 16] pointed out
the problems of SAM. [8] discussed that the sensitivity of SAM on parameter re-scaling [4], [14] tried to
improve the efficiency of SAM, and [15] figured out that SAM can reluctantly converge to sharp minima
and solved the issue by minimizing the surrogate loss gap. [16] proposed the look-ahead, layer-wise adap-
tive version of SAM for the scalability. In this line of advancements, SAM accomplished considerable
success in various research areas.

However, theoretical understanding of SAM lags far behind empirical success. As pointed out
by [17], the existing theoretical justification of SAM provided by [13] has a limited explanation. Though
[17] provided some new aspects of theoretical analysis on SAM in terms of implicit biases [18, 19, 20],
their results were limited to the diagonal neural networks. To extend our understanding of SAM, we
alm to further investigate the behavior of SAM from a perspective of escape efficiency and asymmetric
valleys [21].

The escape efficiency of stochastic gradient descent (SGD) [22, 23, 24, 25, 26] explains how can SGD
find flat minima even the loss landscapes are highly non-convex and thus have infinitely many sharp
minima. The escape efficiency is defined as an inverse of the mean exit time from a local minimum
to outside of the valley of minimum. [25] showed that the escape efficiency of SGD is exponentially
proportional to the sharpness of minima and inverse of depth of the valley. And [26] extended the results
of [25] into the non-stationary regime. In other words, SGD can escape a minimum exponentially faster
for a sharper and shallower minimum. We build our theory upon these results by showing that the loss
function of SAM has sharper and shallower minima than SGD.

[21] introduced a new concept of minima beyond sharp and flat minima called asymmetric valleys.

In asymmetric valleys, the loss function grows rapidly in one direction and relatively slowly in the



opposite direction. They empirically demonstrated that asymmetric valleys are prevalent in the neural
network loss landscape. Furthermore, they theoretically proved that a bias toward the flatter side of the
asymmetric valley leads to better generalization even if it slightly increases the training loss.

In this paper, to extend the theoretical understanding of how SAM can outperform SGD, we propose
two main theorems: (a) SAM can escape sharp minima faster than SGD, and (b) SAM gener-
ates biases into flatter region on asymmetric valleys and it leads to better generalization.
We prove the theorems and empirically verify the validity of our theorems on ResNet-18 [27], Preacti-
vation ResNet-164 [28], WideResNet-28x10 [29], and PyramidNet-110 [30] on CIFAR-10 and 100 [31].
Furthermore, based on our theory, we propose an efficient way to utilize the SAM called Parsimonious
SAM (PSAM). PSAM is a periodical SAM in the exploration stage (i.e., early stage of training) and
the same as the original SAM in the exploitation stage (i.e., latter stage of training). We demonstrate
that PSAM presents comparable performance with SAM (83.54% vs 83.563% with WideResNet-28x10
on CIFAR-100) while it requires only 65% of computation cost compared to SAM. We summarize our

contributions as follows:

e We propose novel theoretical results regarding how SAM outperforms SGD on two new aspects:
escape efficiency and asymmetric valleys. First, we prove that SAM can escape a minimum faster
than SGD and it implies that SAM can explore more minima, and can converge to the flatter minima
by escaping minima that SGD would be stranded. Second, we prove that SAM converges to flatter
region on asymmetric valleys than SGD and it leads to better generalization. We experimentally
verify that the proposed theory holds well in practice. To the best of our knowledge, we are the
first to theoretically and empirically investigate the behavior of SAM in terms of escape efficiency

and asymmetric valleys.

e Based on the proposed theory, we also propose a novel way to utilize SAM in a more efficient man-
ner, Parsimonious SAM (PSAM). We demonstrate that PSAM presents comparable performance
to SAM on various architectures and datasets while it requires only 65% of computational cost of
SAM.



Chapter 2. Preliminaries

In this section, we provide some background knowledge for our main theory. Section 2.1 explains
the details about the Sharpness-Aware Minimization [13], Section 2.2 gives existing results on the es-
cape efficiency of SGD [26], and Section 2.3 offers definitions, assumptions and theorems regarding the

asymmetric valleys [21].

Primitives Let D be an unknown data distribution on R% xR%  where the data point x € R% and the
label y € R4 . From the data distribution, we have n i.i.d. samples (x1,y1),-- -, (Xn,¥n) XD In super-
vised learning, we want to find a minimum w* £ argmin,, cga £(w) where £(w) £ Ex y)p[€(x,y;w)] €
R? — R is the population loss, w € R? denotes the model parameter, and £ € R% x R% x R — R
is the loss function. Since the data distribution D is unknown in most cases, instead of directly op-
timizing £, we often find the empirical risk minimizer %* € RY where w* 2 argminwekdﬁ(w), and
L(w)2 L SN L €(x,yi;w). An open ball centered at w € R* with radius 7 € Rsg(= {z € R: z > 0})
is defined as B, (w) £ {v e R*: ||v —w|y <7}

2.1 Sharpness-Aware Minimization

SAM [13] finds parameter values whose entire neighborhoods have uniformly low training loss value

instead of finding simply have low training loss value. SAM problem can be represented as follows:

m%l LM (p) + A|w||? where L54M () £ "11"132( L(w+e), (2.1)
welRd el p<p

where A > 0 is an ¢ regularization magnitude, p > 0 is a hyperparameter that decides the diameter of
neighborhood around w, and p € [1, 00) indicates p-norm for maximization over e.

Since directly solving the inner maximization in Equation 2.1 involves another optimization problem,
SAM detours the maximization problem by considering the first-order Taylor expansion of f(w +€) with

respect to € around 0:

€ (w) 2 argmaxnenpspé(w +e€) argmax“e”pspé('w) + €'V l(w)

= argmaxueupspeTVw[:(w),

since £(w) in the second equality is independent to e. The solution é(w) of the approximated maximiza-
tion problem can be found by the classical dual norm problem:
A Vo L(w) 9!
{w) = p x sign(V,,,C(w))%, (2.2)
(IVal(w))”
where 11, + ; = 1. By substituting Equation 2.2 into the first term of Equation 2.1, we obtain an
approximated SAM problem
min £(w + é(w)).

weRS



However, computing its gradient involves Hessian computation which requires a very high computational
cost. Therefore, SAM simply drops the second-order derivative terms in V,,,[:('w + €) and finally obtains
the approximated gradient of SAM:

~

th)£SAM ('w) ~ V,,,L:(‘IU) |w+€ .

Note that even though SAM goes through several approximation steps, they empirically demon-
strated that SAM performs well in practice. In addition, they showed that including second-order

derivative terms does not always lead to better performance.

2.2 Escape Efficiency of SGD

Here we provide some theoretical results on the escape efficiency of SGD in [26]. Let’s start from
the following refined definition of the SGD.

SGD Formulation With the initial parameter wy, € R¢, learning rate > 0, and batch size B, SGD

generates a sequence of parameters {w; };en by the following update rule:

wip1 = wy — NVyuLp(w),VE € N, (2.3)

where Lp(w) = % Zf’;l (x5, yi;w).

Since the mini-batches are randomly sampled from data distribution D, Equation 2.3 has an inherent
randomness. To decouple the deterministic part and stochastic part of Equation 2.3, we decompose the
batch gradient VLg(w;) into (a) true gradient term V,,£(w) and (b) the noise term VL(w;) -V, Lp(w;).

We model the noise term (b) as a Gaussian noise. Then we can rewrite the Equation 2.3 as follows:

wit1 = wg — NV L(w;) + \/ %wt, (2.4)

where w; ~ N (0,7C(w,)) is a parameter-dependent Gaussian noise with its covariance.

Mean Exit Time Let w* € R? be a local minimum of the loss function £{w) and w* € D C R? be a
open neighborhood around w*. Then the mean exit time of SGD from w* to outside of D is defined as

follows.

Definition 2.2.1. (Mean Exit Time from D, Definition 2 in [26]) Counsider an refined SGD (Equation 2.4)
starting from wg € D. Then, the mean exit time of SGD from D is defined as

E[v] £ E [min{tn : w; ¢ D}].

This means that the mean exit time is the minimum step ¢ times learning rate n such that w; is
outside of D. Hence, SGD with a small mean exit time rapidly escapes the minimum. In this manner,

we define the escape efficiency of SGD as an inverse of the mean exit time:
Escape Efficiency = E[v] .

Next, we present some widely used assumptions on this literature [22, 24, 25].



Assumption 2.2.2. (Locally Quadratic, Assumption 1 of [26]) There exists a matrix H* € R?*? such
that for any w € D, the following equality holds:

Vw € D, L{w) = L(w*) + V,L(w*)(w — w*) + %(w —w*) H*(w — w*).

The assumption 2.2.2 means that the loss function around local minimum is quadratic. Although this
is a quite strong condition, it is accepted as the inevitable minimal assumption necessary to theoretically

analyze the complicated loss function of a modern neural networks.

Assumption 2.2.3. (Hesse Covariance Matrix, Assumption 2 of [26]) For any w € D, C(w) is approx-
imately equal to H*.

The assumption 2.2.3 means that the noise of SGD in Equation 2.4 follows a Gaussian distribution
where the covariance matrix is the Hessian of loss function at the local minimum. This was first intro-
duced by [24] to reflect the anisotropic nature of SGD noise and since then, most studies have used this
assumption.

For the next assumption, we need an additional object : Let ¢ = {¢;}icjo. 7] C R? be a trajectory
in the parameter space over a time interval [0, T] with a terminal time 7, where ¢; € R? is a parameter
which continuously changes in t. ¢ is regarded as a continuous map [0,7] — R?, i.e., is an element of

Cr (]Rd) (a set of continuous trajectories in R?). With this object, we have the following assumption:

Assumption 2.2.4. (Assumption 3 of [26]) There exists K > 0 such that for any ¢ € Cr (R?) and
t €[0,7], ¢, < K holds.

The assumption 2.2.4 means that for any escaping trajectory from wg (inside of D) to wr (outside of
D), the trajectory does not change drastically. This is required to eliminate some pathological escaping

trajectories. With these assumptions, we introduce the main result of [26].

Theorem 2.2.5. (Thoerem 3 of [26]) Consider the discrete Gaussian SGD (Equation 2.4) whose initial
point is the local minimum wy = w*. Suppose that assumption 2.2.2, 2.2.3, 2.2.} hold. Then, the mean

exit time from the neighborhood D has the following limit:

DabAL — ANL, (53 —1) < lim 1 mEp] < DabAL+ AN, (53 - 1), (2.5)

min 7’_’0 min

where AL £ mingecpp L(w)— L(w*) is the depth of minimum, some constant A, k = f‘\“’“ is the condition

min

number of C(w*), and Apax; Amin 6re the mazimum, minimum eigenvalues of H* respectively.

_1
Theorem 2.2.5 implies that the escape efficiency of SGD ~ exp {—%AE)\WEX} since the second term

of both sides (i.e., AX2 (n% —1)) is dominated by the first term. Thus we can say that SGD can escape

min
the minimum faster as (a) the minimum is sharper (larger Amax) and (b) the minimum is shallower
(smaller depth AL).



2.3 Asymmetric Valleys

Before we discuss the asymmetric valleys, we formally define the asymmetric valley.

Definition 2.3.1. (Asymmetric Valleys, definition 1 and 2 of [21]) Given constants p > 0,7 > { > 0,¢ >
1, a direction u (i.e., |u|2 = 1) is (r,p, ¢, {)-asymmetric direction with respect to a point w € R¢ and
loss function £ : R? - R if 0 < VoL(w + fu) < p and V,L(w — fu) < —cp for any £ € ({,r). A local
minimum w* € R? of loss function £ : R4 — R is in (r,p, ¢, ¢)-asymmetric valley if there exists at

least one direction u € R? such that (r,p, ¢, ()-asymmetric direction with respect to w* and L.

— L(w +:lu)

£(w + Lu)

Figure 2.1: Visualization of (r,p, ¢, {)-asymmetric direction. V,L(w + fu) < —cp (above the red dashed line)
for £ € (—r,—() and 0 < V,L(w + fu) < p (below the green dashed line) for £ € ((, 7).

In words, as shown in the Figure 2.1, (r, p, ¢, (}-asymmetric direction u means that the loss function
L grows slowly along u and grows rapidly towards —u. Thus the loss function has asymmetric gradients
along u and its opposite direction. In the definition, ¢ handles a very small region where the loss function
has near-zero gradients around the local minimum since the loss function is often assumed as smooth.

Now, we introduce some theoretical results in [21] regarding the generalization and bias into the flat

side with several definitions and assumptions.

Definition 2.3.2. ((d, R)-shift gap, Definition 3 of [21]) For ¢ > 0,6 € R?, and fixed functions £ and L,
we define the (6, R)-shift gap between £ and £ with respect to a point w as &5 (w) := max,ep(r) |£'(w+
v+ 8) — L(w + v)| where £'(w) := L(w) — min,, £(w) + min,, £(w).

Here, £’ has introduced to eliminate the vertical gap between the population loss £ and empirical risk
L. Thus £5(w) can measure the true shift gap (i.e., horizontal differences) without considering vertical
differences. As shown in the Figure 2.2, low £;(w) value means that after é-shifting the population loss
L, population loss and empirical risk match well. For instance, £5(w) = 0 implies £ is locally identical
to £ after the shift 4.

Assumption 2.3.3. (Random shift assumption, Assumption 1 of [21]) For a given population loss £
and a random empirical loss £, constants R > 0,7 > ¢ > 0,6 >0, avector § € R? with r > §; > ¢
for all i € [d], a minimizer ©*, we assume that there exists a random variable § € R? correlated with £
such that P(6; = ;) = P(6; = —8;) = 1/2 for all i € [d], and the (4, R)-shift gap between £ and £ with
respect to w* is bounded by &.

Assumption 2.3.3 means that there exists a random shift § € R¢ such that (4, R)-shift is bounded

by some constant {. More precisely, the population loss £ and empirical loss L are almost identical



£(w)

—

Figure 2.2: Visualization of £,L,and £ on R. £’ is the vertically shifted population loss £ to eliminate
the vertical differences between £ and £. By considering £ and L', we can measure the effect of shift § more

accurately. Note that in this figure, £ is identical to £’ for some shift 8.

(bounded by &) under the random shift §. This assumption is required to derive the specific lower bound
of the population risk difference in Theorem 2.3.5. Note that since L is defined on a set of random
samples from D, the shift § should be also a random variable. And since the samples defining £ were
independently and identically sampled, the expectation of ¢ is essentially zero. Assumption 2.3.3 reflects

this observation.

Assumption 2.3.4. (Locally asymmetric, Assumption 2 of [21]) For a given empirical loss L, and a
minimizer @, there exist orthogonal directions u;, g, ... . u; € R? such that u; is (r, p;, ¢;, ¢)-asymmetric
with respect to w* + v — (v, u;)u; for all v € B(R') and i € [k].

Assumption 2.3.4 means that there are orthogonal asymmetric directions uq, ..., ux which are asym-
metric with respect to all points in the R’-neighborhood of the minimum w*. This assumption is required
to preserve the asymmetricity of a biased solution. More specifically, suppose that (orthogonal) asym-
metric directions u;, ..., ur are asymmetric with respect to the local minimum w* but not for the near
points around w*. Then, some biased solutions around w* may have different asymmetric directions and
hence we cannot directly compare the two solutions. Note that both assumptions were verified to fit in
well with practice by [21].

Under these assumptions, [21] introduced the main theoretical result that says a bias into flatter

side on asymmetric valley leads to the better generalization:

Theorem 2.3.5. (Theorem 1 of [21]) For any | € R¥, if assumption 2.3.3 holds for R = ||l||2, assump-
tion 2.3.4 holds for R’ = ||8]s + ||l||2, and (i < l; < min{r — &,8; — ¢} for all i € [k], then we

Ci—l)Pi
have
k k
EsL(0%) — BEsL(b* + Y Liug) > Y (ei — Dlipi/2 — 2k€ > 0.
i=1 i=1

Theorem 2.3.5 says that the biased solution w* + Zle l;u; into flatter side on asymmetric valleys
has better generalization than the original one w*. Also implies that there are proper ranges on biases

(li’s) and in that range, a larger bias provides greater generalization improvement.



Chapter 3. Proposed Theory

The common belief of the SAM’s empirical success is simply that SAM can find flat minima than
SGD. Here, based on the straightforward observations (Section 3.1), we provide new perspectives of
the SAM’s successes which are one that extends the common belief into a more sophisticated man-
ner (Section 3.2) and another one that reveals the biasing effect of SAM on asymmetric valleys and its

consequences (Section 3.3).

3.1 Motivation

Our theory is inspired by the following simple observations:

= — Liw) — L(w)
014 o S/ Y 3 g1ad  / N B
F \ Ciw)= max ciw+e] / L{wl= max Ciw+ &)
"\ el =0 y \ \ iz =0
012 4/ \ oY \ 012 4/ \ /
f Y 1/ \ f \ / \
0.10 \ ,» 410 i / .
= \ = \ /
iy 0.08 R. / i 008 X /
t \ : \ /
® A\ / z \
T 006 \ 1, o oo X /
\ 3 \ I."I
0.0 A\ I 0.0 \ ;
\ N / y /
N {f b \
0,02 A " 0.02 N\ /
N Y ;
0.00 =y 0.00 e
0.4 0.6 08 1.0 12 1.4 1.6 0.4 0.6 o8 Lo 12 LA 16
w
(a) Symmetric case, small p (b) Symmetric case, large p
16 4 — Lw)=e%" 4 03w-1 16 4 — rw)=e"%" 4+ 03w-1
L(w)= max L(w+¢€) L(w)= max L(w+¢€)

llellz=p llellz=p

B B
b 3
= 81 =~ 81
=z S
<6 < 6

4 4

2 1 2 1

0 o

-10.0 -7.5 -5.0 =25 0.0 2.5 5.0 7.5 10.0
w w
(c) Asymmetric case, small p (d) Asymmetric case, large p

Figure 3.1: Observations on £ for symmetric loss and asymmetric loss on R.

The Figure 3.1 presents the observations on £(w) in R for symmetric £(w) and asymmetric £(w).
For symmetric loss, we use a simple sextic function £(w) = w?(w — 1)%(w — 2)? and for asymmetric loss,
we use the LINEX loss function £(w) = e*” — aw — 1 with @ = —0.3. In all cases, we can observe that
L(w) is floating above the £(w), i.e., the shape of £(w) is more narrow and shallow than £(w). Also,

for asymmetric cases (Figure 3.1c and 3.1d), we can observe that the local minimum of £(w) is biased



to flat side on the asymmetric valley. Furthermore, we can see that the aforementioned effects become

greater as p increases. In the following subsections, we formalize these observations into general cases.

3.2 Escape Efficiency of SAM

According to the Theorem 2.2.5, SGD escapes a minimum quickly as it is sharper and shallower.
Given this result, we show that SAM loss (Equation 2.1) converts a minimum into a more sharp and

shallow one and thus SAM can escape the minimum faster than SGD. We state our theorem as follows:

Theorem 3.2.1. (SAM converts a minimum into sharper and shallower minimum) Let L(w) : R - R
be the loss function and w* € R? be a local minimum. Assume that there exists an open neighborhood
D C R? containing w* such that L is locally quadratic on D. And let B.(w*) C R? be the largest open
ball such that B,(w*) C D. Then, when we let L(w) 2 max|,<, L(w + €) with p € (0,7), we have

w* = w* and
(i) AL = AL+ 2z=p? > AL

(i1) Amax > (14 25 ) Amax

where w* € R? is the local minimum of £, AL = min,ecsp L({w) — L(w*) is the depth of minimum and

Amax 074 Amax are the mazimum eigenvalues of V2 L(w*) and Vﬁ,f,(u-)"), respectively.

Theorem 3.2.1 says that SAM loss (£(w), Equation 2.2) converts a valley of minimum (i.e., basin
of attraction) into a sharper and shallower valley than the original one. And the effect increases as p
increases. Since we know that SGD can escape a minimum faster as the valley of minimum is sharper and
shallower (Theorem 2.2.5), as a consequence of Theorem 3.2.1, we can conclude that SAM can escape
the minimum faster than SGD. This result implies that (a) SAM can escape more flat minima
where SGD would be stranded, and (b) SAM can explore more minima than SGD within
the same time steps. Hence, we can say that SAM is more likely to find a flat minimum than SGD.
For the proof of the theorem, please refer to Section 7.1.1.

Meanwhile, there is another reason why SAM can find flat minima. Since SAM considers the
maximum over g-neighborhood around a point, if a valley of minimum is narrower than p, it would be

eliminated by taking the maximum. Hence, SAM can exclude such extremely sharp (narrow) minima.

3.3 Biasing Effect of SAM on Asymmetric Valleys

We start with the definition of symmetric direction as a counterpart of asymmetric direction:

Definition 3.3.1. (Symmetric Direction) Given constants b > a > 0, r > ¢ > 0, a direction v € R? is
(r,a,b,)-symmetric direction with respect to a point w € R? and loss function £ if a < V,L(w+v) <
band —b < V,L(w — fv) < —a for any £ € ({,r).

A symmetric direction v means that the scale of gradients along v are similar on both sides of v.
From the Equation 2.1, we can regard SAM as SGD on the perturbed loss £(w) £ max|e|,<p L(w + ¢€).
Based on this interpretation, we prove that SAM generates a bias into the flatter side of the asymmetric
valley by showing the perturbed loss [:(w) has shifted local minima to the flatter side than the original
loss £(w). With the definition 2.3.1 and 3.3.1, we state the following theorem:



Theorem 3.3.2. (SAM generates a bias into flatter side on asymmetric valleys) Let w* € R? be a
local minimum of £ : R* — R. Suppose that there is an (r,p,c,0)-asymmetric direction u with respect
to w* and L. That is, there are constants p > 0,7 > 0,¢ > 1 such that 0 < V,L(w* + ¢u) < p and
V. L(w* —tu) < —cp for any £ € (0,7). Then, when we let £(w) = max|,<, L(w+e) for some p € (0,7)

and w* be the local minimum of L, we have

(6", u) € [(w*,u) + Z;—ip, (w*, u) + p) .

Furthermore, (*,v) € (('w*,'v) — Z_T';p, (w*,v) + l;;_'_zp) for any (r,a,b,0)-symmetric direction v.

Theorem 3.3.2 says that for an asymmetric direction u, the perturbed loss L has new local minimum
w* near the original one w* which is shifted to the flatter side along . And also implies that for any
other symmetric direction v, SAM does not generate any bias on both sides. Note that in the theorem,
we only provide the interval where w* lies. This is because the only information we have is upper bounds
of gradients on both sides along v (i.e., Vo L(w* —fu) < —cp and VL(w* + €u) < p). The exact location
of w* depends on the actual value of the loss function. Nevertheless, it is sufficient to conclude that

SAM generates bias toward the flat side of asymmetric valleys.

L(wy, wa)
0 2 4 6 8 10

-10 -05 00 05 1.0 15 20 25 3.0
w1

Figure 3.2: An example of applying Theorem 3.3.2 on R?, SAM solution @" is marked as the red star and

SGD solution w* is marked as the blue star.

Note that although the Theorem 3.3.2 considers one asymmetric direction, it can be also applied
for several (orthonormal) asymmetric directions. Suppose that there are & < d orthonormal asymmetric
directions uy, ..., u; € R? (such orthonormal set of asymmetric directions can be attained by the Gram-
Schmidt process). Then for each u;, SAM generates a bias into the flatter side along the u;. By summing
up the biases, we can say that the SAM generates a bias into a flatter region that is aware of all the
asymmetric directions. Figure 3.2 gives an example of applying Theorem 3.3.2 for two asymmetric
directions on R2. In Figure 3.2, the loss function has two asymmetric directions: along with the first
coordinate (along with w;) and along with the second coordinate (along with wg). As we can see, SAM
generates bias into the flatter side for each asymmetric direction and thus @* is shifted to the diagonal
direction (sum of two asymmetric directions). Please refer to Section 7.1.2 for the proof of the theorem.

Next, we theoretically demonstrate that the bias generated by SAM (Theorem 3.3.2) leads to better

generalization. We provide the following theorem as a corollary of Theorem 2.3.5:
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Theorem 3.3.3. (SAM leads to beiter generalization) Suppose that there exists a (r,p,c,0)-asymmetric
direction u € RY with respect to a local minimum w* € R? of empirical risk L:RY 5 R. Let £L:R? 5 R

w ) — w —_—p — .

for the SAM solution w* € RY with p € (?C(j;,)ﬁ, <L min{r — (4, u), (4, u)})

Theorem 3.3.3 says that the bias generated by SAM leads to better generalization with the certain
condition on p. From the theorem, we obtain some insights on the value of p. First, the existence of a
lower bound of p implies that using SAM with small p does not guarantee that SAM generalizes better.
Second, the Equation 3.1 suggests using as large as possible p would provide maximal generalization
benefit. For the proof of the theorem, please refer to Section 7.1.3.

However, since the upper bound of p is closely related to the specific asymmetric direction u (i.e.,
¢ and {6,u)), in practice, it is hard to obtain the maximal generalization benefit. Since there are
many different asymmetric directions and thus many different conditions (ranges) on p, we have to
choose the minimal one among the possible maximal p’s. Nonetheless, if we can use different p for each
asymmetric direction, we may reach a maximal generalization benefit. Thus this observation gives rise
to the possibility that further improving direction of SAM through properly designed p-scheduling in

some adaptive manner.

Remarks on ( =0 In the Theorems, we assume that { = 0 for simplicity. However, letiing ¢ = 0
necessarily means that there is a ‘jump’ in the gradient at £ = 0 and this condition cannot hold for
smooth functions. If we consider the ReLU networks, there’s no problem since its loss landscape is
non-smooth. Nevertheless, even in the case of neural networks with smooth activation functions (such as
tanh and sigmoid), letting ¢ = 0 does not severely harm the validity of our theory since { was introduced
to handle the very small neighbor around the local minima that have near-zero gradients. Please note

that the original work [21] also used this simplifying assumption.
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Chapter 4. Proposed Framework

In this section, we propose a novel framework utilizing the SAM in a more efficient manner, Parsimo-
nious SAM (PSAM). Section 4.1 introduces our motivation for the framework, and section 4.2 provides

the detailed method and algorithm of the framework.

4.1 Motivation

SAM [13] has suffered from the high computational cost involved in solving the inner maximization
problem (Equation 2.1). According to the Equation 2.2, SAM essentially requires a doubled computa-
tional cost compared to the vanilla SGD training since the SAM computes two backpropagation opera-
tions for each update step. This expensive computational cost has become a major impediment to the
scalability of SAM. To mitigate the issue, [14] proposed a more efficient SAM (referred to as ESAM)
by considering stochastic weight perturbation and sharpness-sensitive data selection. However, it still
requires an extra 40% computational cost than SGD (while SAM requires 100% extra cost). To further
make the SAM efficient, we propose a novel framework with the following motivation.

Based on our previous result (Theorem 3.2.1), we raise the following question: If the role of SAM
at the early phase of training is all that supports escaping a minimum faster, is it necessary
to use SAM for every update? As an answer to this question, we speculate that at the early phase
of training, periodically using SAM update may be suflicient to quickly escape a minimum since all we
need for escaping minima is some noisy gradient. However, in the latter phase, SAM update should be
used densely (i.e., for every update step) to guarantee that (a) consider as many as possible asymmetric
directions and (b) converge to the biased solution.

In addition to our theory, some experimental results also support our vision. Table 5.2 shows that
SGD — SAM outperforms SAM — SGD, which means that SAM is more effective on the exploitation

phase. With these intuitions, we develop a new scheme exploiting SAM in the next subsection.

4.2 Method

We propose a novel framework utilizing the SAM in a more efficient way called Parsimonious
SAM (PSAM). The PSAM consists of two phases. In the early phase of training (~ E steps), it uses
SAM update once for n — 1 vanilla SGD updates (i.e., period n). In the later phase of training (E steps
~), it uses SAM for every update. Here, the threshold E determines whether the current time step is in

the early phase or latter phase and the period n are hyperparameters.

Computational Cost of PSAM Since PSAM periodically requires two backpropagation, its compu-
tational cost can be drastically reduced. The computation cost of PSAM depends on the threshold E
and period n. Let the extra computational cost of SAM be 1. Then, the computational cost of PSAM

with E n is
1 E +Exl*] (n—1)E
T T "n nT '’

12



where T is the number of total training steps. For instance, if we let E = 0.757 and n = 20, the extra
computational cost of PSAM is 0.2875 (i.e., 28.75% of original SAM). Note that the extra computation
cost of ESAM [14] is about 0.4. In the experiment section, we verify that E = 0.757 and n = 20 is
actually a feasible option (does not significantly hurt the performance).

We provide the algorithm of PSAM as follows:

Algorithm 1 PSAM Algorithm

Require: Loss function £(x,y;w), Model parameter w € R? Batch size B, Learning rate n > 0,

Neighborhood size p > 0, Threshold F, Period n.
Initialize parameters wy.
fort =010 T do

Sample Batch {(x1,y1),...,(XB,¥B)}

Empirical Risk £(w;) 2 L 27 | (i, yi; we)

if t < E then

if t mod n — 0 then

p _ , Vwl(w) . . _
E(wt) - p”V'ﬂc(wf)lh > Equatlon 22 WIth P 2
Wi ¢ Wi — NV L(W) |, 42(y) > SAM update
else
wy & Wy — nvwﬁ(wt) > SGD update
end if
else
P _ , Vul(w) . . _
é(wy) = pIIV...L(wf)IIz > Equation 2.2 with p = 2
Wy < Wy — ﬂvwﬂ(w)|wt+e(wt) > SAM update
end if
end for
return wr

Remarks on PSAM Note that PSAM is orthogonal to the existing efficient version of SAM, Efficient
SAM (ESAM) [14]. While PSAM manages the frequency of SAM updates, ESAM considers efficient
ways (SWP and SDS, please refer to [14] for the details) for each SAM update. Thus, PSAM becomes
much further efficient if the ESAM method is applied to every SAM update simultaneously.
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Chapter 5. Empirical Analysis

In this section, we provide an empirical analysis of our theory and the proposed method. Section 5.1
presents the experimental setup including datasets, architectures, and hyperparameters. Section 5.2
provides empirical evidence that SAM can escape a minimum faster than SGD, and Section 5.3 supports
that SAM generates biases into the flatter region. Section 5.4 provides experimental results on the
proposed method PSAM.

5.1 Experimental Setup

We evaluate the validity of our proposed theory and method on various architectures and datasets.
Here we present an experimental setup including dataset, model architectures, and hyperparameters. All
the experiments are conducted on a single machine equipped with 8 RTX 3090 GPUs and JAX [32] is
used for the experimental framework. We use CIFAR-10,100 [31] which are the widely used computer
vision benchmark datasets. We investigate our theory and method with four common CNN architectures:
ResNet-18 [27], Preactivation ResNet-164 [28], WideResNet-28x10 [29], and PyramidNet-110 [30].

We use batch size 256 for all experiments to follow the m-sharpness strategy of SAM with m = 32.
We train the networks using SGD with Nesterov momentum [33] with momentum 0.9 and cosine learning
rate scheduling [34] (No warmup). We use learning rate 0.1 and weight decay coefficient 5 x 10~* for all
architectures. The training epochs are set to 200 epochs for all architectures except PyramidNet-110 (300
epochs). We set p = 0.15 for ResNet-18, p = 0.05 for Preactivation ResNet-164 and WideResNet-28x10
on CIFAR-10 and set p = 0.3 for ResNet-18 and p = 0.1 for Preactivation ResNet-164 and WideResNet-
28x10 on CIFAR-100. For PyramidNet-100, we use p = 0.2 for both on CIFAR-10 and 100. All the
details are applied identically to both SGD and SAM.

5.2 Escape Efficiency of SAM

To verify that SAM escapes a minimum faster than SGD, we conduct the following experiment: start
from the local minimum, and measure how many update steps are required to escape the minimum. More
precisely, to obtain the local minima, we train the model with SGD for 200 epochs. And start from the
pre-trained model, run SGD and SAM with the same learning rate (constant learning rate) and same
batch size, we count how many steps are required until the training accuracy falls below 90%.

For the pre-training, we use the same configurations as mentioned in Section 5.1. For escape test,
we use batch size 256 for all architectures and learning rate 0.03 for ResNet-18 and WideResNet-28x10,
0.022 for PreActivation ResNet-164, and 0.025 for PyramidNet-110. The learning rates are selected by
grid search with {0.02,0.021,...,0.03} to avoid that escape too quickly or failing to escape.

Table 5.1 shows that SAM requires much smaller steps to escape the minimum than SGD. And as p
increases, the escaping speed becomes much faster. For the typical value of p (0.15 for ResNet-18, 0.05
for PreActResNet-164 and WideResNet-28x10, 0.2 for PyramidNet-110), we can see that SAM escapes
the minimum approximately 8 to 50 times faster than SGD. Hence, we can conclude that the results

support our theory (Theorem 3.2.1) very well.
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Table 5.1: Number of steps required to escape the local minimum on CIFAR-10. We repeat the experiment

100 times with different random seeds and report mean =+ std.

Architecture
Method
ResNet18 PreActResNet164 WideResNet28x10 PyramidNet110
SGD 139.32 +454.83 100.50 +a41.25 366.05 +145.38 104.43 +37.77
' SAM (p=0.05)  136.50 +161.04  50.98 +ez91  67.81 +sses 21.82 x9.17
SAM (p=0.1) 18.91 +7.26 14.06 +2.64 15.30 +4.18 7.16 +4a.08
SAM (p =0.2) 4.18 +2.95 7.88 +1.62 6.40 +2.46 2.19 +1.00
SAM (p =0.3) 2.23 +o.55 3.30 +2.03 2.61 +1.14 1.16 +o.39
SAM (p = 0.5) 1.21 +on1 1.07 +o.26 1.08 +o.27 1.00 +o.00
SAM (p = 0.7) 1.01 +o.10 1.01 +o.10 1.00 +o.00 1.00 +o.00

5.3 SAM on Asymmetric Valleys

To evaluate the biasing effect of SAM on asymmetric valleys, we design two experiments: (a) (SGD
— SAM) Training the model with vanilla SGD for the early phase and then switching to SAM for the
latter phase, and (b) (SAM — SGD) Training the model with SAM for early phase and then switch
to vanilla SGD for latter phase. In both experiments, we switch the training scheme after 75% of total
training epochs. Note that this criterion is widely used [35, 36] to divide the exploration phase and

exploitation phase.

Table 5.2: Test accuracy (%) of SGD, SAM, SGD — SAM, and SAM — SGD on CIFAR-10 and 100. We

repeat the experiment five times with different random seeds and report mean =+ std.

Architecture
Method
ResNet18 PreActResNet164 WideResNet28x10 PyramidNet110

o SGD 95.40 +0.14 95.58 +o0.12 96.31 +o.15 96.57 +0.13
:‘ﬁ SAM 96.13 +o.08 96.45 +o.11 97.21 to.06 97.39 +o.07
% SGD - SAM 9603010 ! 9623 toos 96.92 005 9797 toos

SAM — SGD 96.00 +o.13 96.02 +o.12 96.94 to0.08 96.88 +o.06
S SGD 78.78 +o0.21 78.48 +o.25 81.23 +o.1s 82.47 +o.23
:'ﬁ SAM 79.75 to.14 81.01 +o.24 83.62 0.6 85.35 +o0.14
E  SGD - SAM 8015 tosa 8026 017 8301 toas 8462 o2
© SAM — SGD 79.54 +o0.12 79.16 +o.28 82.97 +o.09 83.22 to0.15

As seen in Table 5.2, SGD — SAM and SAM — SGD provide better generalization performances
than vanilla SGD. It can be interpreted as SAM is effective not only at the early stage of training but also
at the later stage of training. This is a noteworthy observation. The general belief in the performance
improvement of SAM is that it finds a wide valley of minima, and where it converges in the found valley

is not considered. However, this observation gives a novel insight that the performance improvement
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of SAM does not only come from looking for a wide valley but also converges to a flatter region in the
found valley.

To demonstrate that the effect of SAM on asymmetric valleys matches well with our theory (Theo-
rem 3.3.2 and 3.3.3), we visualize the loss landscape between SGD solution and SGD — SAM (Figure 5.1)
and between SAM solution and SAM — SGD solution (Figure 5.2). In the figures, we plot the train
error rate curve (red curve) and test error rate curve (blue curve) along the line through two solutions
(1 - a)w; + aw,.

In Figure 5.1, when we switch to SAM after SGD training, we can see that SGD — SAM solution
is located in the more flat region in the valley compared to the corresponding SGD solution (does not
switch to SAM). And in the Figure 5.2, when we switch to SGD after SAM fraining, we can see that
SAM — SGD solution is on the sharper side on asymmetric valleys while the corresponding SAM solution
(which does not switch to SGD) is in a flatter region. These results support that SAM generates biases
into the flatter side of the asymmetric valley and it leads to better generalization. We provide additional

loss landscape visualizations on CIFAR-100 in Section 7.2.
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Figure 5.1: Loss landscape visualization between SGD solution and SGD — SAM solution on CIFAR-10. We
visualize the train error rate curve (red curve) and test error rate curve (blue curve) between SGD solution and
SGD — SAM solution. @ = 0 is the SGD solution and @ = 1 is the SGD — SAM solution.
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Figure 5.2: Loss landscape visualization between SAM solution and SAM — SGD solution on CIFAR-10. We
visualize the train error rate curve (red curve) and test error rate curve (blue curve) between SAM solution and
SAM — SGD solution. @ = 0 is the SAM solution and @ =1 is the SAM — SGD solution.
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Figure 5.3: Test accuracy (%) of SGD — SAM and inter-solution ¢; distances between SGD solution and SGD
— SAM solution for different p and switch epochs with ResNet-18 on CIFAR-10. Blue dashed line in the left

figure indicates the averaged test accuracy of SGD.

Ablative Study on p and switch epoch According to the Theorem 3.3.2, the size of bias increases
as p increases. Figure 5.3a shows that as p increases, the size of bias (inter-solution distance) increases
as well and it leads to more better generalization. However, it is confirmed that the bias rather damages
the performance when using too large p. Such p’s seem to have gone beyond the upper bound of p is
provided in the Theorem 3.3.3 which ensures the better generalization. Figure 5.3b shows that as more
training with SAM (as switch epoch become smaller), the inter solution distance increases and has better
generalization. This supports that the more SAM is used, the more asymmetric directions are considered

and thus has greater bias (larger inter-solution distance) and has better generalization.

Experimental Motivation of PSAM On the other hand, we can observe an interesting tendency
in Table 5.2 : SGD — SAM leads to better performance compared to SAM — SGD in 7 out of 8 cases.
This means that the effect of SAM in the exploitation phase is greater than in the exploration phase. In
other words, it can be seen that the main effect of SAM is to find a wider region from the found valley

rather than to find wide valleys. This observation motivates our method, PSAM.
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5.4 Experimental Results on PSAM

We evaluate the effectiveness of PSAM on CIFAR-10 and 100 with various architectures. All training

environments are the same as mentioned in Section 5.1.

Table 5.3: Test accuracy (%) of PSAM on CIFAR-10 and CIFAR-100. We repeat the experiment five times

with different random seeds and report mean =+ std.

Architecture
Method
ResNetl8 PreActResNet164 WideResNet28x10 PyramidNet110

o SGD 95.40 +o.14 95.58 to.12 96.31 tao.15 96.57 tao.13
-
pI:’, SAM 96.13 to.0s 96.45 to.11 97.21 ta.06 97.39 +o.07
< ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
B PSAM
0 95.96 +o.10 95.91 +o.05 96.85 +o.05 97.25 to.08

(n = 20)
S SGD 78.78 +o.21 78.48 to.25 81.23 to.18 82.47 to.23
i
n': SAM 79.75 +o0.14 81.01 +o.24 83.62 +o.16 85.35 +o.14
T REE R
& PSAM
0 79.69 +o0.10 81.22 to.23 83.53 +a.17 84.41 to.20

Table 5.3 shows that PSAM provides a comparable performance with the original SAM while it
requires only ~ 65% computational cost of original SAM (relative computational cost : 1 for SGD, 2
for SAM, 1.4 for ESAM [14], and 1.2875 for PSAM). However, in a few cases, it is confirmed that the
PSAM'’s performance is significantly lower than SAM, but it is much better than SGD.

Ablative Study onn Through the ablative study on the period n, we find that it is possible to obtain
the desired performance by tuning the period n. Figure 5.4 shows that smaller n tend to have better
performance while it hurts the efficiency of PSAM. And also we can see that the correlation between
the period and performance is highly dependent on the dataset and architecture. Hence, there is a
trade-off between the efficiency and performance in PSAM and the sweet spot should be found by the

hyperparameter tuning.
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Figure 5.4: Test accuracy (%) of PSAM with different n. Dashed lines indicate the test accuracy of SGD.
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Chapter 6. Concluding Remark

In this paper, beyond the common belief of SAM, we demonstrate that the performance improvement
of SAM originated from two fundamental causes. First, SAM can escape minima faster than SGD. As
consequence, SAM may explore more minima than SGD under the same time constraint and can escape
from more flat minima where SGD would be trapped. Accordingly, SAM is more likely to find wider
valleys of minimum than SGD. Second, SAM biases a solution toward the flatter side of asymmetric
valleys and it leads to better generalization. On the basis of our theory, we also suggest an eflicient way
of using SAM (Parsimonious SAM) and corroborate its applicability on a variety of architectures and
datasets.

To the best of our knowledge, we are the first to conceptually scrutinize the SAM in terms of
escape efficiency and asymmetric valleys. Our work fills the gap between qualitative knowledge and
quantitative theoretical analysis regarding the generalizability of SAM. We believe the proposed theory
not only clarifies how SAM finds flat minima but also offers researchers a novel perspective for future

research on the behavior of SAM and the design of better sharpness-aware minimization algorithms.
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Chapter 7. Supplementary Materials

7.1 Proofs of Theorems

7.1.1 Proof of Theorem 3.2.1
Proof. We begin with the following lemmas:

Lemma 7.1.1. For a quadratic function f(z) : R — R, %f(z*) = & (f(z* +6) — f(z*)) where z* is

the minimum of f.

Proof. Consider the second-order Taylor expansion of f at x*:

2
Ha" 40 = 1)+ g 1+ 5 (4 f @) &

= fa") + g (j;f(z*)) 5.

since z* is the minimum of f and thus %f(a:") = 0. Note that since f is quadratic, the second-order
Talyor expansion is exactly same as f. Hence we have
1/ d2 2
fle* +8) - fa) = (m (m*)) »,
and thus

) = 2 4 8) - 1)),

O
Lemma 7.1.2. Let L(w) : R > R and w* be a local minimum of L(w). Assume that there exists an
open neighborhood D C R containing w* such that L is locally quadratic on D. And let B, (w*) C R

be the largest open ball such that B,.(w*) C D. Then for [:('w) = max||,<, L(w +¢€) : R = R with

p € (0,7), we have AL = AL + %ﬂd'fjgﬁ(w*) > AL where w* € R is the minimum of £ and AL =

ming,eap L(w) — L(w*).

Proof. Without loss of the generality, we simply let w* = 0 and £(w) = aw? with a > 0 for w € (—r,71)
since any quadratic function can be obtained by parallel translation of aw?. And also, since p < r, we

observe that
3 Lw+p) = aw+p)?, welo,r—p)
L(w) =
‘C(w - p) = a(w - p)2: wE (_T + P,O)

And hence, we know that %* = 0. Since taking maximum over some neighborhood does not changes

maximum values, we know that min,eap £(w) = mingeap £(w). However, since £(w*) = 0 and L(w*) =
L(0) = L(p) = ap?, we obtain

AL = Iin L(w) — L(w*) = Jnin, L(w) — L(w*) + L(w") — L(w")
= min L{w) — L(w0*) + L(©*) — L(w*)
~ 2 ~ P2 d? A
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. _1d *
since o = 3 Fiz L(w*). O

Lemma 7.1.3. Let L(w) : R > R and w* be a local minimum of L{w). Assume that there ezists an
open neighborhood D C R containing w* such that L is locally quadratic on D. And let B,(w*) C R
be the largest open ball such that B,(w*) C D. Then for L(w) = max|,<p L(w + €) : R = R with
p € (0,7), we have (1 + ﬁ) a2 L(w*) < %[ﬁ(u‘)*) where w* € R is the minimum of L.

dw?
Proof. Similar to the proof of Lemma 7.1.2, since p < r, we observe that

F(w) = L(w+p)=a(w+p)?, wel0,r—p)

L(w—p)=alw—p)?, we(-r+p0)

While £ is not differentiable at the minimum w*, we can approximate the second-order derivative
%[ﬁ(u’)*) through the function value sensitivity £(w%* + §) — £(%*) by the Lemma 7.1.1. Note that
the Lemma 7.1.1 only holds for twice differentiable functions. However, even though the £(w) is not
differentiable at the minimum %* = 0, it is a continuous convex function (in fact, quadratic almost every-
where), thus approximating the £(w) as a quadratic function would not involve any severe approximation
error.

Since w* = 0, we have

- - Lp+8)—L(p) = +6)? — ap?, delo,r—
C(* +6) Ea) — (p+6) - L(p) = a(p+0)* —ap (0,7 — p)
L(—p+0)—L(p) =a(-—p+08)?—ap?, d€(-r+p,0)
ad? +2abp, S € (0,7~ p)

ad? — 2adp, € (—r+p.0)

= ad? 4+ 2aldlp, |6 <r—p

Hence, we have

B i) = 2 +8) - £@%) = 2 (a6® + 2006p) =20 (14 L) > 20 (14 2
gz L") = o5 (L( w')) = (e a|d|p) = 2a |5|_a )

Then, since %E(w*) = 2@, we can conclude that %E('E)*) > (l + L ) a2 L(w*).

r—p | dw?

O

Now, let vy,...,v4 € R? be the orthonormal eigenvectors of H* (V2 L(w*), Hessian of L£(w) at
the minimum w*) that spans R? (i.e., orthonormal basis of R?) which are corresponds to eigenvalues
A1,...,Aqg where Ay > Xy > --- > A4. This is possible by the spectral theorem since H* is a Hermitian
matrix. Since SAM considers the direction which £ grows the fastest, we can consider only v, that
corresponds to the largest eigenvalue A;. Then by Lemma 7.1.2, we have that AL = AL + %pg =
AL + 2maxp?,

Next, let’s prove that Ay < j\max. From our previous definitions, we know that »; is the eigenvector
of Ay = Apax- Let H* =V, L(w*) and H* = V.,,[:(u")"). If we consider the second-order derivative along

direction v;, by Lemma 7.1.3, we can say that

vleI*'uIZ (]-l-"LJ)UIH*UI (]+ p ))\1 (7.1)
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since the second order derivative along v is v' Hv. Then, since the Amax = max|y|,—1 v' H*v and (7.1)
means that v, H*v; > (1 + ﬁ) A1 with [Jvg||]2 = 1, we can conclude that

Xlua.x 2 'U;rg*'vl 2 <]- + d ) A1 - (] + P )Amax-
r—p r—p

7.1.2 Proof of Theorem 3.3.2

Proof. We begin with the following lemmas:

Lemma 7.1.4. Let w* = 0 be a local minima of function L : R — R. Suppose that w* is (r,p,c,0)-
asymmetric valley. That is, there are constants p > 0,7 > 0,¢ > 1 such that 0 < ﬁﬂ(w) < p for
w € (0,r) and ﬁﬁ(w) < —e¢p for w € (—r,0). Then, when we let L(w) = max|(,<p L(w + €) for
p € (0,r), L has a local minima w* € [i;—}p,p).

Proof. First, note that the asymmetric direction u is defined on w € (—r,r) and we consider £~('w) only
for w € (—r + p,T — p) to ensure that w + ¢ is inside the valley around the local minimum w = 0. From
the definition of £(w), we observe that

; L(w+p) if L(w+ p) > L(w— p)
L(w—p) if L{w+ p) < L{w— p)

— {w)

e L(W)= max L(w+E€)
P

llell2=

L£(w)

Figure 7.1: Visualization of £ and £ on R.

Then we know that when w > p, we have L(w + p) > L(w — p) since L is a increasing function on
(0,7) by assumption. Similarly, when w < —p, L(w + p) < L(w — p) since L is a decreasing function on
(—r,0).

For —p < w < p, we have w+ p > 0, w — p < 0 and thus L(w + p) < p(w + p), L(w — p) >
—cp(w — p) by the definition of asymmetric direction. Then if w € R satisfies p(w + p) < —ep(w —
p)(which is equivalent to w < %p), we have L(w + p) < L(w — p).

Hence we obtain that

E(w) = Lw+p) fw>p

Lw—p) fw< ﬁ;ip
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For f;}p < w < p, we cannot guarantee that L(w + p) > L(w — p) or not since we only have upper

bound of £(w+ p) and lower bound of £(w — p). However, since £(w) = L(w+ p) is a increasing function

on w > p and L(w) = L(w — p) is a decreasing function on w < i_;—ip, we can conclude that £(w) has
c—1

cr1Psp)- Note that the exact position of w within [

function value. O

a minimum @ € |

ip, p) depends on the actual

Lemma 7.1.5. Let w* = 0 be a local minima of function L : R — R. Suppose that w* is (r,a,b,0)-
symmetric valley. That is, there are constants b > a > 0,r > 0 such that a < %E(w) < b for
w € (0,7) and —b < ﬁ[,('w) < —a for w € (—r,0). Then, when we let L(w) = max|¢||,<, L(w + €) for

pe(0,r), L has a local minima o* € (fﬁp, f":‘bp). Furthermore, if w* is perfectly symmetric valley,

i.e., L(—w) = L(w) for any w € (—r,1), then ©* = w*.

Proof. Analogous to the proof of Lemma 7.1.4, we consider £(w) only for w € (—r+ p,r— p) and assume
that p < r. We observe that

L(w+p) if L(w+p) = L(w—p)
L(w—p) if L(w+ p) < L(w— p)

L(w) =

And we know that L(w + p) > L(w — p) for w > p and L(w + p) < L(w — p) for w < —p since L(w)
is a increasing function on w > 0 and decreasing function on w < 0. For —p < w < p, we have w+p > 0,

w — p < 0 and thus we obtain
a(w+p) < Llw+p) <blw+p), —alw-—p <Liw—p)<-bw-p)

from the definition of (r,a, b, 0)-symmetric direction.

Then if w satisfies that b(w + p) < —a(w — p), then we have L(w + p) < b(w + p) < —a(w — p) <
L(w — p) and thus L(w + p) < L(w — p). Also, if w satisfies that —b(w — p) < a(w + p), we have
L(w — p) < blw — p) < a(w+ p) < L(w+ p) and thus L(w — p) < L(w + p).

Hence, we obtain

- L(w+ ifw>%2,>0
E(w) = (w + p) ,,+:p
Lw—p) fwogp<0

Since [:('w) is increasing on w > L“T‘,‘,p > 0 and [:(w) is decreasing on w < Z—;Zp < 0, we can conclude

that £(w) has a minimum at & € (:—;gp, Z’ﬁp). Here, note that the exact position of % depends on the
actual value of function.
Furthermore, if £(w) = L(—w) for any w € [0, — p), we have L{(w + p) > L(w — p) for w > 0 and

L(w+ p) < L(w — p) for w < 0. Thus £(w) has minimum at &* = w* = 0. O

Now we prove the main theorem. Let Ly 4(£) £ £(w + fu) : R — R be the function £(w) along the
asymmetric direction u. Then if we consider L.+ ,,(£), we know that £+ ,(£) has a minimum at £* =0
since w* is a minimum of £(w) on R?. Since u is a (r,p, ¢, 0)-asymmetric direction with respect to the
local minimum w* € R? and function £(w), u is also a (r,p, ¢, 0)-asymmetric direction with respect to
the local minimum £* = 0 and function £, ,(£) by the definition of £« . (£).
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Then by the Lemma 7.1.4, we obtain that the perturbed loss Ew*,u (¢) has a local minimum A=

{i;}p, p). Since [ﬁ,,,.,,‘(f) = [f('w* + ¢u) and [:,,,*,,,(é) has local minima #* > 0, we can say that E(w) has

a local minima %* = w* + £*u. This is equivalent to

(5", u) = (w*,u) + 0 € | (w*,u) + <

mlh('w :U)+P>:

where w* € R? is a local minimum of £(w).

Now, let’s consider a (r,a,b,0)-symmetric direction v € R%. Then by the Lemma 7.1.5, we ob-

a—b _b—a
a+bp’a+b

argument, we can conclude that £(w) has a local minimum %* = w* + ¢*v which is equivalent to

tain that the perturbed loss [',,,,*,,,(E) has a local minimum ¢* € ( ) Similar to the previous

~ _ * % * a—b * b—a
(0%, v) = (w*,v) + £ € {(w ,'u)+7a+bp,<w ,'v)+a+bp)

— |(w* )7b—a (w* >+b—a
= [{w*,v —a_H)p,w,v a—l—bp .

7.1.3 Proof of Theorem 3.3.3

Proof. By the Theorem 3.3.2, we know that w* = @* + lu for [ € [Z_ﬂp, p). In the Theorem 2.3.5, since

:Lip) u is enough to obtain the lower bound of

c—1
c+1

larger l; gives greater gap, simply letting w* = @* + (

loss gap between w* and w*. To apply the Theorem 2.3.5 for @*, we let [ = p € R, Assumption 2.3.3

holds for R = g—ip and Assumption 2.3.4 holds for R’ = [|8]|» + %1 p.

c—1

o71p, the condition on I; in Theorem 2.3.5 is translated to

From the equality | =

4 c—1 - -
ﬁ < cr1” < min{r — (8, u), (5, u)}

which is equivalent to

R <o < S min{r - (60, (6,0))

by substituting p = °+}l and §; = (0, u) since §&; is shift amount along the direction » in Assumption 2.3.3.

c—

Then, by the Theorem 2.3.5, we obtain

~ ~ g (C— 1)21]
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7.2 Additional Experimental Results

In addition to the results on Section 5.3, here we provide loss visualization results on CIFAR-100.
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Figure 7.2: Loss landscape visualization between SGD solution and SGD — SAM solution on CIFAR-100. We
visualize the train error rate curve (red curve) and test error rate curve (blue curve) between SGD solution and
SGD — SAM solution. o = 0 is the SGD solution and @ =1 is the SGD — SAM solution.
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Figure 7.3: Loss landscape visualization between SAM solution and SAM — SGD solution on CIFAR-100. We
visualize the train error rate curve (red curve) and test error rate curve (blue curve) between SAM solution and
SAM — SGD solution. @ = 0 is the SAM solution and @ =1 is the SAM — SGD solution.

27



[1]

[5]

[7]

[8]

[9]

[10]

[11]

Bibliography

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever.
Deep double descent: where bigger models and more data hurt*. Journal of Statistical Mechanics:
Theory and Ezperiment, 2021:124003, 12 2021.

Sepp Hochreiter and Jiirgen Schmidhuber. Flat minima. Neural computation, 9(1):1 42, 1997.

Nitish Shirish Keskar, Jorge Nocedal, Ping Tak Peter Tang, Dheevatsa Mudigere, and Mikhail
Smelyanskiy. On large-batch training for deep learning: Generalization gap and sharp minima. In
5th International Conference on Learning Representations, ICLR 2017, 2017.

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize
for deep nets. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages
1019-1028. PMLR, 06-11 Aug 2017.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss
landscape of neural nets. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran
Associates, Inc., 2018.

Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric, ge-
ometry, and complexity of neural networks. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 888-896. PMLR, 2019.

Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Normalized flat minima: Exploring scale
invariant definition of flat minima for neural networks using PAC-Bayesian analysis. In Hal Daumé
III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pages 9636-9647. PMLR, 13-18 Jul 2020.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-
aware minimization for scale-invariant learning of deep neural networks. In Marina Meila and Tong
Zhang, editors, Proceedings of the 38th International Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, pages 5905-5914. PMLR, 18-24 Jul 2021.

Henning Petzka, Michael Kamp, Linara Adilova, Cristian Sminchisescu, and Mario Boley. Relative

flatness and generalization. Advances in Neural Information Processing Systems, 34, 2021.

Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic
generalization measures and where to find them. In International Conference on Learning Repre-

sentations, 2020.

Pratik Chaudhari, Anna Choromanska, Stefano Soatto, Yann LeCun, Carlo Baldassi, Christian
Borgs, Jennifer Chayes, Levent Sagun, and Riccardo Zecchina. Entropy-sgd: Biasing gradient de-
scent into wide valleys. Journal of Statistical Mechanics: Theory and Ezperiment, 2019(12):124018,
2019.

28



12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

(23]

[24]

[25]

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better: closing the general-
ization gap in large batch training of neural networks. Advances in neural information processing
systems, 30, 2017.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In 9th International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.

Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick Siow Mong Goh, and
Vincent Tan. Efficient sharpness-aware minimization for improved training of neural networks. In

International Conference on Learning Representations, 2022.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha C Dvornek, sekhar
tatikonda, James s Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware

training. In International Conference on Learning Representations, 2022.

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12360-12370, June 2022.

Maksym Andriushchenko and Nicolas Flammarion. Towards understanding sharpness-aware mini-
mization. arXiv preprint arXiv:2206.06232, 2022.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On

the role of implicit regularization in deep learning. In /CLR (Workshop), 2015.

Scott Pesme, Loucas Pillaud-Vivien, and Nicolas Flammarion. Implicit bias of sgd for diagonal
linear networks: a provable benefit of stochasticity. Advances in Neural Information Processing
Systems, 34, 2021.

Chulhee Yun, Shankar Krishnan, and Hossein Mobahi. A unifying view on implicit bias in training

linear neural networks. In International Conference on Learning Representations, 2021.

Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat local minima.
Advances in Neural Information Processing Systems, 32:2553 2564, 2019.

Stanislaw Jastrzebski, Zac Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Amos Storkey, and
Yoshua Bengio. Three factors influencing minima in sgd. arXiv preprint arXiv:1711.04623, 2017.

Bobby Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local
minima? In International Conference on Machine Learning, pages 2698-2707. PMLR, 2018.

Zhanxing Zhu, Jingfeng Wu, Bing Yu, Lei Wu, and Jinwen Ma. The anisotropic noise in stochastic
gradient descent: Its behavior of escaping from sharp minima and regularization effects. In Kamalika
Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 7654-7663.
PMLR, 09-15 Jun 2019.

Zeke Xie, Issei Sato, and Masashi Sugiyama. A diffusion theory for deep learning dynamics: Stochas-
tic gradient descent exponentially favors flat minima. In International Conference on Learning

Representations, 2021.

29



[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

Hikaru Ibayashi and Masaaki Imaizumi. Quasi-potential theory for escape problem: Quantitative

sharpness effect on sgd’s escape from local minima. arXiv preprint arXiv:2111.04004, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770 778, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual

networks. In European conference on computer vision, pages 630-645. Springer, 2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In Edwin R. Hancock Richard
C. Wilson and William A. P. Smith, editors, Proceedings of the British Machine Vision Conference
(BMVC), pages 87.1-87.12. BMVA Press, September 2016.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. In Proceedings

of the IEEE conference on computer vision and pattern recognition, pages 5927 5935, 2017.

A Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University of
Toronto, 2009.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: composable transformations of Python+NumPy programs. github, 2018.

Yurii Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k?). Proceedings of the USSR Academy of Sciences, 269:543-547, 1983.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017.

Pavel Izmailov, Dmiirii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. In Amir Globerson and
Ricardo Silva, editors, Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial In-
telligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pages 876-885. AUAI Press,
2018.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural Information

Processing Systems, 34, 2021.

30



